Question
A non-empty zero-indexed array A consisting of N integers is given.
A permutation is a sequence containing each element from 1 to N once, and only once.
For example, array A such that:
The goal is to check whether array A is a permutation.
Write a function:
For example, given array A such that:
Given array A such that:
Assume that:
Solution
 
A permutation is a sequence containing each element from 1 to N once, and only once.
For example, array A such that:
    A[0] = 4
    A[1] = 1
    A[2] = 3
    A[3] = 2
is a permutation, but array A such that:    A[0] = 4
    A[1] = 1
    A[2] = 3
is not a permutation, because value 2 is missing.The goal is to check whether array A is a permutation.
Write a function:
that, given a zero-indexed array A, returns 1 if array A is a permutation and 0 if it is not.def solution(A)
For example, given array A such that:
    A[0] = 4
    A[1] = 1
    A[2] = 3
    A[3] = 2
the function should return 1.Given array A such that:
    A[0] = 4
    A[1] = 1
    A[2] = 3
the function should return 0.Assume that:
Complexity:
- N is an integer within the range [1..100,000];
- each element of array A is an integer within the range [1..1,000,000,000].
Elements of input arrays can be modified.
- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Solution
def solution(A):
    counter = [0]*len(A)
    limit = len(A)
    for element in A:
        if not 1 <= element <= limit:
            return 0
        else:
            if counter[element-1] != 0:
                return 0
            else:
                counter[element-1] += 1
    return 1
 
No comments:
Post a Comment