class sklearn.preprocessing.LabelEncoder
Encode labels with value between 0 and n_classes-1.
It can also be used to transform non-numerical labels (as long as they are
hashable and comparable) to numerical labels.
Encode labels with value between 0 and n_classes-1.
Attributes: |
classes_ : array of shape (n_class,)
|
---|
Examples
LabelEncoder can be used to normalize labels.>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2]...)
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])
>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']
No comments:
Post a Comment